![]() | |
![]() |
![]() ![]() |
Politica de confidentialitate |
|
![]() | |
• domnisoara hus • legume • istoria unui galban • metanol • recapitulare • profitul • caract • comentariu liric • radiolocatia • praslea cel voinic si merele da aur | |
![]() |
![]() |
||||||
Impartirea polinoamelor | ||||||
![]() |
||||||
|
||||||
1.Teorema impartirii cu rest Fiind date doua polinoame oarecare cu coeficienti complecsi f si g cu g<>0, atunci exista doua plinoame cu coeficienti complecsi q si r a .i. f = gq+r unde grad r < grad g (1) In plus polinoamele q si r sunt unice satisfacand proprietatea (1) f = deimpartit g = impartitor q = cat r = rest Demonstratie:1.Existenta f = an Xn + an-1 X n-1 +………+a1 X+a0 Caxi g= bm Xm +bm-1 X m-1 +………+b1 X +b0 Caxi grad f = n grad g = m 1.n < m q = 0 f=0*g+f 2.n >= m an / bm an Xn / bm Xm q1= (an / bm) * X n-m f= ( (an / bm) * X n-m ) *g + f1 (1) grad f1 = n1 <grad f = n an Xn + an-1 X n-1 +………+a1 X+a0/ : bmXm f1= an1 Xn1 + an1-1 X n1-1 +………+a11 X+a01 Daca gr. f1 =n1 i) gr f1 < gr g STOP ii) daca gr f1 >= gr g f1= ( (an1 / bm) * X n1-m ) *g + f2 (2) gr f2=n2 <n1 < n i) gr n2<m STOP ii) gr n2>=m f2= ( (an2 / bm) * X n2-m ) *g + f3 (3) ………………… p pasi p+1 fp= ( (anp / bm) * X np-m ) *g + fp+1 (p+1) gr f p+1<m STOP f1= f - ( (an / bm) * X n-m ) *g / f2= f1 - ( (an1 / bm) * X n1-m ) *g / f3= f2- ( (an2 / bm) * X n2-m ) *g / + …………………………………. / f p+1= f p - ((anp / bm) * X np-m) *g / u9q2qu f p+1 = f - g ((an / bm) * X n-m + (an1 / bm) * X n1-m +…….+ (anp / bm) * X np-m ) f = fp+1 +g ((an / bm) * X n-m + (an1 / bm) * X n1-m +…….+ (anp / bm) * X np-m ) q = ((an / bm) * X n-m + (an1 / bm) * X n1-m +…….+ (anp / bm) * X np-m ) r = f p+1 Gr f p+1< m |
||||||
![]() |
||||||
![]() |
||||||
|
||||||
|
||||||
Copyright© 2005 - 2025 | Trimite document | Harta site | Adauga in favorite |
![]() |
|